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ABSTRACT 

We apply our recent analytic solutions to the radiation diffusion equation to problems of interest 
for ICF hohlraums.  The solutions provide quantitative values for absorbed energy, which are of 
use for generating a desired radiation temperature vs. time within the hohlraum.  In particular we 
use analytic fits to the Rosseland mean opacity and to the specific heat of combinations of 
materials (“cocktails”) designed to maximize the former while minimizing the latter. By doing so 
we find good agreement with numerical simulations and with experimental results. In particular 
we find that the wall loss savings of cocktails vs. the standard gold walled hohlraums have both 
pulse-length and temperature dependencies.  Due to those dependencies we predict that NIF 
cocktail hohlraums will perform better than present day cocktail experiments. In addition, we 
apply our solutions to finding that density of foam hohlraum walls which minimizes wall loss by 
being of sufficiently low density to be supersonic, thus reducing kinetic energy losses, yet high 
enough density to not unduly suffer from enhanced specific heat capacity.  

 
1. Introduction  
 
 On the Nova Laser at LLNL, we demonstrated (Rosen et al. 1994) many of the key 
elements required for assuring that the next laser, the 1.8 MJ National Ignition Facility (NIF) will 
drive an Inertial Confinement Fusion (ICF) target to ignition.  The indirect drive approach 
converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray hohlraum to 
drive the fusion capsule in its center. On Nova we've demonstrated good understanding of the 
temperatures reached in hohlraums and of the ways to control the uniformity with which the x-
rays drive the spherical fusion capsules. In is paper we apply our recent analytic solutions to the 
radiation diffusion equation (Hammer & Rosen (“HR”), 2003) to recent problems of interest for 
ICF hohlraums.  In particular we would like to operate NIF far from its damage thresholds, 
which forces us to find ways to make a hohlraum more efficient, such that it would require only 
1 MJ of laser energy to provide the same drive to the ignition capsule that previously depended 
on nearly 2 MJ into a conventional gold hohlraum. In Section 2 we make general remarks on 
hohlraum energetics. In Section 3 we show how “cocktails” – mixtures of materials (not just pure 
Au) designed to maximize opacity and minimize specific heat - can be one approach to 
minimizing hohlraum wall losses and thus lower the laser energy input requirements that can 
achieve the same hohlraum temperature. In Section 4 we address other energy saving schemes, 
such as using low density walls. In Section 5 we briefly summarize our findings.  
      
2. Hohlraum Energetics 
 
 We consider a hohlraum illuminated by a laser of energy EL. It enters the hohlraum 
(usually made of a high Z material such as Au) and is absorbed along the inner walls where it is 
aimed. The hot plasma that ensues is a copious source of x-rays. We parameterize this process by 
a conversion efficiency ηCE. Thus we assume that ηCEEL worth of x-rays now flood the hohlraum 
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and uniformly bath the wall areas of all that they see. Some of the x-rays are absorbed by the 
capsule, and some leave the hohlraum through the laser entrance holes (LEH). Since the capsule 
ablator is normally of low Z material that does not re-radiate much, it, like the LEH, absorbs all 
the flux σT4 that impinges on it. Thus these two energy loss channels are σT4 times the area of 
the capsule and LEH respectively, integrated over time. Our major challenge is to calculate the 
energy absorbed by the high Z wall subject to the flux of x-rays. The time rate of change in 
internal energy (per unit volume) would be equal to the divergence of the diffusive flux. For our 
system there are 2 fields of energy to consider: matter and radiation. The energy density of 
matter we write as ρeth, where e is the specific energy, and the radiative flux is F = -
(4/3)λdσT4/dx. Thus: 
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Before proceeding with any formal solutions, we can see how far simple dimensional analysis 
can take us. We write down Eq. (1) dimensionally: 
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where the opacity κ = 1/ρλ. We recast this in terms of the “Marshak front areal density” mF: 
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A non-linear Marshak heat wave of radiation (Marshak 1958) progresses diffusively through the 
material. A flat-topped T(x) profile takes a sharp nose-dive to zero at a front position xF. A  
T(x)= T0 {1 –[x/xF(t)]}1/4 profile is a good approximation to the solution. To complete this 
analysis we need to know the T,ρ dependencies of κ and e. For Au we find that  
κ = κ0 ρ 0.2 / T 1.5   and    e = e0T 1.6 / ρ 0.14    (4) 

Eqs. (3) and (4) lead to: 
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Despite the tiny ρ dependence our task is not yet done. The energy (per unit area) in the wall is 
dimensionally emF and e has some non-negligible density dependence, so we must find an 
expression for the density in terms of T and t. The heat front progresses very slowly through the 
solid density high Z material. An isothermal rarefaction wave progresses through the heated 
material, significantly decompressing it and inducing much hydrodynamic motion in this “blow-
off” plasma. A way to proceed (Rosen (1979)) is to find an “average” density in this blow-off by 
reasoning that after some time t, an amount of mass (per unit area), mF(T,t,ρ),  has been heated 
and expands into the vacuum at the sound speed cS(T,t,ρ), so simply set ρ=mF/cSt. This 
accomplishes what we sought- a way to relate ρ (implicitly) to T & t. But since all ρ 
dependencies of mF and cS are power laws it is straightforward to solve for ρ explicitly in terms 
of T & t, and then plug back in to solve for mF and then for E/A. We get: 
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We must now determine the exact coefficients.  The full set of hydrodynamic equations, in 
Lagrangian format (m, not x) is:   
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Here V=1/r. We supplement these equations with equations of state (Eq. (4), along with P=re/V 
with r=0.25. In HR we solve (7) by means of a perturbation technique with a small 
parameter ε = 1.6/(4+1.5)=0.29 the numbers being the power law T dependencies of e, 
aT4, & 1/κ respectively. We make a self-similar assumption T=TBtkf(m/mF(t)). We find 
to zero order, a spatial profile f=(1-( m/mF(t))1/4 where mF(t) =mF0t(1+4k)/2.  The ρ and u 
profiles are, to the same order, those of an isothermal rarefaction. The first order solutions differ 
from all these by quantities of order ε. We verify energy conservation, integral E(x,t)dx  = 
integral F(x=0,t)dt  through order ε2, where E includes internal and kinetic energy. 
  
 We quote here the results for 2 useful choices of k: 0  & 0.18. The scaling of m & E/A 
are precisely those of Eq. (7) as they must be. The coefficients are mF0 = (9.9,7.4) 10-4 g/cm2 
respectively, and E/A=(0.58,0.39) hJ/mm2 respectively. The absorbed flux is given by F=F0T3.34 

t-0.41 with coefficients F0=(0.34,0.46) hJ/ns/mm2. Note that E/A is simply the time integral of F. 
Also be aware that for the k=0.18 case you must remember to put the time dependence of T = T0 
t 0.18 into all of these equations. Thus for example the E/A (for k=0.18) = 0.39 T0 

3.34
  t 1.2 hJ/mm2.  

We can now, predict the hohlraum temperature for a given hohlraum geometry and incident laser 
pulse. To calculate all of this analytically we adopt a simple “source=sink” model. The source is 
the laser energy EL, converted to x-rays, so that now ηCE EL worth of x-rays bathe the hohlraum 
walls. We set that source equal to the energy sinks, which for a very simple hohlraum (no 
capsule) is the wall loss (the E/A of the previous paragraph times the area of the walls), and the 
LEH loss which is the time integral of σT4 times the area of the laser entrance holes. We use 
convenient "radiation hohlraum units” (“rhu”) in which T is measured in hectovolts (hundreds of 
eV), area in mm2, time in ns, mass in gm and energy (a bit clumsily) in hectojoules.  With these 
units, σ = 1.03 and normalized irradiance is 10

13
 W/cm

2
 (= hJ/mm

2
 ns = 10

2
 J /10

-2
 cm

2
 10

-9
 s) 

and similarly, normalized power is 10
11

 W (= hJ/ns = 10
2
 J /10

-9
 s).  

 
 As an example we take the following “scale 1” hohlraum illuminated on the Nova laser at 
LLNL in the 1990’s. It was a gold cylinder of length L = 2.5 mm, and radius R = 0.8 mm, and on 
each end a disk sealed the cylinder. Each disk had a “50% LEH” namely a laser entrance hole of 
radius 0.4 mm. One immediately calculates the wall area AW = 15.6 mm2 and ALEH=1 mm2. The 
source energy, a “flat top” laser power of 100 – 300 hJ/ns for a duration of 1 ns. (= 10-30 TW). 
Our simulations predict a ηCE = 0.7 tns

0.2. The efficiency increases with time in part because the 
albedo behind the conversion layer builds up with time. This time behavior helps explain an 
important experimental observation, that T rises as t0.18, hence our interest as quoted above with 
the k=0.18 case. Equating ηCE EL = ηCE PLt which scales as t 1.2 to the principal x-ray sink, the 
wall, EW which scales as T3.3t0.6 (Eq. (6)) we see that these two terms will balance iff T = T0t0.18. 
Conversely, if we wish to have a truly flat T = T0t0, we need a PL(t) that “droops” in time. For the 
30 TW experiment, the source of x-rays (at 1 ns) will be 0.7PLt =(0.7)(300)(1) =210 hJ. The wall 
loss EW will be (using the k=0.18 HR result) 0.39 T0

3.3 t1.2 AW = 0.39 T0 3.3 (1) (15.6) = 6.24 T0
3.3 

at 1 ns. We must also calculate the LEH loss. The flux out the LEH will be T 4ALEH so we 
integrate t4(0.18) in time and get ELEH= 0.58 T 4  at 1 ns. Solving 210 = 6.24 T0 3.3 + 0.58 T 4 
results in a T=2.75 with 176 hJ of wall loss and 34 hJ of LEH loss (justifying our claim that most 
of the loss is in the walls). The resulting prediction of 275 eV matches data and simulations quite 
well. Repeating this calculation for say 10 TW (70 replaces 210) yields a T=1.99 again in 
agreement with data and simulation. Thus our simple model of source=sink with sinks calculated 
by HR organize the database very nicely. 
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3. Cocktails 
 

When we consider Eq. (6) we see that in order to lower the E/A of a wall loss, we need to 
lower e and to raise k. Since e scales as Z/A the higher the A the lower (at a given T) will be the 
ionization state Z and hence e. Thus mixing in higher A elements into the wall will lower e. 
Moreover, if we do mix in a higher A element, at a given T, it will have different atomic levels 
and thus its opacity, if A is chosen properly, will be high at frequencies where Au’s is low. Thus 
this “cocktail” of materials can accomplish both things. Experiments with cocktails 
(Orzechowski et al. 1996) compared the burn-through times tbt of Au foils placed across a hole in 
the side of a 260 eV hohlraum, to those of AuGd cocktail foils. A delay in burn-through signal 
for the cocktail was seen. By Eq. (6) we expect (again for a k=0.18 case) that tbt should scale as 
mT0

-2(eκ)1/2, so the higher κ of the AuGd cocktail caused the delay. Since then we have tried to 
measure the rise in T for a full cocktail (vs. Au) hohlraum at the same laser drive. The cocktail 
chosen was U0.6Dy0.2Au0.2 which at NIF-like temperatures of 300 eV can save nearly 20% in 
wall loss. The baseline Au hohlraum at the Omega Laser at URLLE was a “scale 0.75” cylinder 
(L=2.06 mm, R=0.6 mm, with 66% LEH (R=0.4 mm) so that AW= A end caps + A cyl wall = 1.2 + 7.8 
= 9.0 mm2 and ALEH = 1 mm2. The incident flattop power was 20 TW for 1ns. As above, we use 
the k=0.18 results of HR. We infer about an 8% reflectivity, so with a 68% conversion efficiency 
we get a source at 1 ns of 101 hJ. We set that equal to the wall loss 3.5T0 

3.3 and LEH loss 0.6T0
4, 

solve for T and get T=2.55 with 76 hJ wall loss and 25 LEH loss. This 255 eV is very close to 
the data.  

  
We fit our latest opacity/ EOS theory of Au as κ = 6544 ρ 0.18/T 1.43 (cm2/g) and e = 

3.33 T 1.54/ρ 0.15 (MJ/g), and of U0.6Dy 0.2Au0.2 as κ = 5670 ρ 0.10/T 0.90 (cm2/g) and e = 0.95 
eAu. The cocktail has a “flatter”, less sensitive T, ρ behavior because it averages over several 
elements. We also note that the opacity of cocktails does not exceed that of Au until past 130 eV. 
Using that input, HR predicts for k=(0,0.18), for Au an E/A = (0.598,0.398) T3.3t0.6 (hJ/mm2) 
respectively and for the U0.6Dy0.2Au0.2 E/A = (0.604,0.407) T3.1t0.57 (hJ/mm2) respectively. Thus, 
at 270 eV and 1 ns, the wall loss ratio (cocktail/Au) is (0.84,0.85) respectively while a full multi-
group simulation gives (0.85,0.87), very close to HR theory but differing mostly because the 
opacity is hard to fit with a single power law. All of these were for TB scaling as tk. For U mixed 
with 6% Nb by weight (=14 atom %) add 1% to all those ratios. 

 
Another outgrowth of these scaling laws is to notice that the wall loss ratio scales as T-0.22 

t -0.05 for k=0.18 and even for the “flat top “ k=0 case the wall loss ratio has a t -0.02 ratio. Thus to 
the degree that the Omega experiments are not either at the full NIF temperature of 300 eV, nor 
at the NIF pulse length of 3-4 ns, then the results from such experiments will be pessimistic in 
showing a wall loss ratio advantage of a cocktail hohlraum over Au than would a NIF ignition 
hohlraum. (The ratio for NIF is about 0.83). All of these time behaviors stem from the fact that 
early in time the lower T parts of the Marshak wave profile are relatively more important, and for 
low T the cocktail is actually worse than Au. 

 
So let us redo the Omega hohlraum calculation for T with cocktail walls (actually shot 

with U0.86Nb0.14) and thus our E/A wall loss is 0.416 T 3.1 at 1 ns vs. Au 0.39 T 3.3.  The solution 
now to 101 = 3.7 T 3.1 + 0.6 T4 is T=2.62 so we expect a 7 eV hotter hohlraum than the 255 eV 
Au hohlraum.  Many shots were done with Au end plates and just a cylinder body of cocktail. 
Redoing that we must solve 101= 0.49T 3.3 + 3.2 T 3.1 + 0.6T4 we get 2.61 thus we expect a 6 eV 
improvement for those type of cocktail hohlraums. However, until very recently there was only a 
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2.5 eV difference between Au and cocktail hohlraums. We believe that oxygen contaminated the 
cocktail walls in the process of making them. While Au does not bind to O, U & Dy certainly do. 
The trouble with O in the cocktail is that they are fully ionized so contribute about twice the Z 
per unit weight than the high Z elements, and thus raise e by raising the specific heat. Assuming 
the hohlraums were fully oxygenated we can redo our source=sink model once again but with a 
lossier wall loss due to the high e due to the oxygen. Now the E/A coefficient is 0.44 and, with 
Au end plates we solve 101 = 0.49 T 3.3 + 3.4 T 3.1 + 0.6 T 4 and get T = 2.575, a 2.5 eV 
difference from the 255 eV pure Au hohlraums, in rather close agreement with what was 
observed. The good news is that very recent shots in which great care has been taken to avoid 
oxygenation, has shown the cocktail hohlraums about 6 eV hotter than the Au ones, as expected.  

 
4. Foam-walled Hohlraums and Other Energy Saving Schemes 
 

Can we save on driver energy by making hohlraum walls out of low density high Z 
foams, which have less hydrodynamic motion (namely less radiation heated and ablated material 
that streams back into the hohlraum interior as a low density isothermal blow-off) and hence, 
reduced net absorbed energy by the walls? Using our HR analytic theory, as well as by numerical 
simulations (Rosen & Hammer 2005) we answered yes. We showed that low-density high Z 
foams can indeed lower wall loss by ~ 20% for a drive, T, that is flat in time. Remarkably, this 
reduction is universal- independent of the value of T or its pulse-duration t. We derived an 
analytic expression for the optimal density (for any given T and t) that will achieve this reduction 
factor and which agreed very well with numerical simulations. Reduced hydrodynamic motion of 
the wall material may also reduce symmetry swings, as found for heavy ion beam targets. 
 

Full 2-D simulations also show that combining both these schemes works best, namely 
foam cocktail  hohlraums. This idea has been tried in detail for a heavy ion reactor scale 
hohlraum (Callahan & Tabak 2000). It was optimized via tedious full 2-D simulations and a Au-
Gd foam density of 0.1 gm/cc was arrived at. Applying its drive and pulse length, T = 2.5 and 
t=8, to our optimal density formula, we predicted 0.13 gm/cc, quite close to that value. We have 
also recently tested this foam concept using a cylinder of Ta2O5 made of either 4 gm/cc or 0.1 
gm/cc, each with a gold ring hit by the laser that served as the x-ray source to drive the rest of the 
cylinder walls.  They were performed by P. Young of LLNL at URLLE. A drooping pulse 
produced about a 100 eV flat-topped drive. The 0.1 gm/cc foams were (preliminary result) about 
15% brighter in accord with 2-D simulations and in accord with the “source=sink” approach of 
this paper, when albedo effects are taken into account. More experiments are planned in a more 
fully enclosed hohlraum geometry. More work is needed to extend this idea to shaped pulses, for 
which perhaps graded density foams may be required. 
 

Another “trick” to save energy is to emplace axial shields (small Au disks) to block the 
capsule’s view of the cold LEH (Amendt et al. 1996). The simulation "observables" were a 228 
eV hohlraum with no shine shields vs. a 241 eV drive on capsule for one with shine shields. Why 
would a hohlraum that introduces about 500 J more wall loss via the shine shield disks, actually 
produce a hotter hohlraum rather than a cooler one? The answer (Rosen 1996) to the paradox is 
that we have created an inside out hohlraum, in which the central section is a “hot interior 
hohlraum”, and drives the capsule. Indeed, the outer sections of these hohlraums are “cold 
exterior hohlraums”, and are predicted by simulations to be only about 215 eV. We have also 
derived all of these values analytically (Rosen 1994b). This concept has been tested successfully. 
The drive increase in the hot interior hohlraum was measured via the decreased implosion time 
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of a capsule therein. It was also noticed in those experiments that the axial shine shields provided 
yet another “knob” to control the symmetry of the illumination onto the capsule. 

 
5. Summary 

 
We have presented 3 ways to reduce wall losses, each by nearly 20%, and which can be 

used in conjunction with one another, leading to an overall energy savings of (0.8)3 or about 0.5. 
This will allow NIF to operate quite far from its damage thresholds, and still provide the drive to 
the capsule in the center of the hohlraum required for ignition.  
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